Math 221: LINEAR ALGEBRA

Chapter 8. Orthogonality §8-4. QR Factorization

Le Chen¹

Emory University, 2021 Spring

(last updated on 01/25/2021)

QR Factorization

Algorithm for the QR Factorization

QR Factorization

Algorithm for the QR Factorization

The QR Factorization

Definition

Let A be a real m \times n matrix. Then a QR factorization of A can be written as

$$A = QR$$

where Q is an orthogonal matrix and R is an upper (or right) triangular matrix.

Theorem

Let A be a real $m\times n$ matrix with linearly independent columns. Then A can be written

 $\mathbf{A} = \mathbf{Q}\mathbf{R}$

with Q orthogonal and R upper triangular with positive entries on the main diagonal.

Proof.

Using columns of A to carry out the Gram-Schmidt algorithm to find an orthonormal basis for im(A) or $col(A) \subseteq \mathbb{R}^m$ – columns of Q_1 . One may further extend this basis to an orthonormal basis for the whole space \mathbb{R}^m – columns of $Q = [Q_1, Q_2]$.

The Gram-Schmidt algorithm guarantees that the ith column of A is linear combinations of all jth columns of Q with $j = 1, \dots, i$, which gives the upper triangular structure of R.

Remark

$$A = QR = [Q_1, Q_2] \begin{bmatrix} R_1 \\ O \end{bmatrix} = Q_1R_1 + Q_2O = Q_1R_1.$$

Both QR and Q_1R_1 are called QR decompositions of A. The textbook refers Q_1R_1 .

Remark

Q is orthogonal matrix, namely, $QQ^T = Q^TQ = I_m$. However, Q_1 is not orthogonal matrix (not a square matrix). But We have $Q_1^TQ_1 = I_n$ and $Q_1Q_1^T \neq I_m$ (in general). **QR** Factorization

Algorithm for the QR Factorization

Algorithm for QR Factorization

Algorithm 1: QR Factorization Algorithm

Input : Independent columns of A: $\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\} \in col(A) \subseteq \mathbb{R}^m$ for $j \leftarrow 1$ to n do $\vec{f}_{j} \leftarrow \vec{c}_{j} - \frac{\vec{c}_{j} \cdot \vec{f}_{1}}{||\vec{f}_{1}||^{2}} \vec{f}_{1} - \frac{\vec{c}_{j} \cdot \vec{f}_{2}}{||\vec{f}_{2}||^{2}} \vec{f}_{2} - \dots - \frac{\vec{c}_{j} \cdot \vec{f}_{j-1}}{||\vec{f}_{i-1}||^{2}} \vec{f}_{j-1}.$ $\vec{q}_j \leftarrow \frac{\vec{f}_j}{||\vec{f}_i||}$ for $i \leftarrow 1$ to j do end end Output: $Q = [\vec{q}_1, \cdots, \vec{q}_n]$ and $R = [r_{ij}]$

Problem

Let

$$\mathbf{A} = \left[\begin{array}{rrr} 4 & 1 \\ 2 & 3 \\ 0 & 1 \end{array} \right]$$

Find the QR factorization of A.

Solution

Set
$$A = [\vec{c}_1, \vec{c}_2]$$
. When $j = 1$,
 $\vec{f}_1 = \vec{c}_1 = \begin{bmatrix} 4\\2\\0 \end{bmatrix}$ and $\vec{q}_1 = \frac{\vec{f}_1}{||\vec{f}_1||} = \begin{bmatrix} \frac{4}{\sqrt{20}}\\ \frac{2}{\sqrt{20}}\\ 0 \end{bmatrix}$.

For i = 1,

$$\mathbf{r}_{11} = \vec{q}_1 \cdot \vec{c}_1 = \frac{\vec{f}_1}{||\vec{f}_1||} \cdot \vec{f}_1 = ||\vec{f}_1|| = \sqrt{20}.$$

Solution (continued)

When j = 2,

$$\vec{\mathbf{f}}_2 = \vec{\mathbf{c}}_2 - \frac{\vec{\mathbf{c}}_2 \cdot \vec{\mathbf{f}}_1}{||\vec{\mathbf{f}}_1||^2} \vec{\mathbf{f}}_1 = \begin{bmatrix} 1\\3\\1 \end{bmatrix} - \frac{10}{20} \begin{bmatrix} 4\\2\\0 \end{bmatrix} = \begin{bmatrix} -1\\2\\1 \end{bmatrix} \quad \text{and} \quad \vec{\mathbf{q}}_2 = \frac{\vec{\mathbf{f}}_2}{||\vec{\mathbf{f}}_2||} = \begin{bmatrix} -\frac{1}{2} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}$$

For i = 1,

$$\mathbf{r}_{12} = \vec{\mathbf{q}}_1 \cdot \vec{\mathbf{c}}_2 = \begin{bmatrix} \frac{4}{\sqrt{20}} \\ \frac{2}{\sqrt{20}} \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} = \sqrt{5}.$$

and for i = 2,

$$\mathbf{r}_{22} = \vec{\mathbf{q}}_2 \cdot \vec{\mathbf{c}}_2 = \frac{\vec{\mathbf{f}}_2}{||\vec{\mathbf{f}}_2||} \cdot \left(\vec{\mathbf{f}}_2 + \frac{\vec{\mathbf{c}}_2 \cdot \vec{\mathbf{f}}_1}{||\vec{\mathbf{f}}_1||^2} \vec{\mathbf{f}}_1\right) = \frac{\vec{\mathbf{f}}_2}{||\vec{\mathbf{f}}_2||} \cdot \vec{\mathbf{f}}_2 = ||\vec{\mathbf{f}}_2|| = \sqrt{6}$$

Solution (continued) Therefore,

$$A = QR = \begin{bmatrix} \vec{q}_1, \vec{q}_2 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{bmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} & \frac{\sqrt{6}}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \sqrt{20} & \sqrt{5} \\ 0 & \sqrt{6} \end{bmatrix}$$